4. Following are four differrent relations about displacement, velocity and acceleration for the motion of a particle in general. Choose the incorrect one (s):

i.
$$v_{av}=\frac{1}{2}[v\left(t_{1}\right)+v\left(t_{2}\right)]$$
 ii. $v_{av}=\frac{r(t_{2})-r(t_{1})}{t_{2}-t_{1}}$ iii. $\mathbf{r}=\frac{1}{2}(\mathbf{v}(\mathbf{t}_{2})-\mathbf{v}(\mathbf{t}_{1})(\mathbf{t}_{2}-\mathbf{t}_{1}))$ iv. $a_{av}=\frac{v(t_{2})-v(t_{1})}{t_{2}-t_{1}}$

Sol. (a, c) When an object covers a displacement Δr in time Δt , its average velocity is given by

 $ec{v}_{
m avg}=rac{\Delta r}{\Delta t}=rac{r_2-r_1}{t_2-t_1}$ where r_1 and r_2 are position vectors corresponding to time t_1 and t_2

If the velocity of an object changes from v_1 to v_2 in time Δt , the average acceleration is given by

$$\mathsf{a}_{\mathsf{av}} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

But, when acceleration is non-uniform,

$$V_{\mathsf{aV}}
eq rac{v_1 + v_2}{2}$$

Option (c) is similar to the relation $\vec{r}=\frac{1}{2}at^2$ which is not correct if initial velocity is given.

So (b) and (d) are the correct relations for the uniform acceleration.